VECTOR ANALYSIS
 PROBLEM SETS

LISIBACH ANDRÉ

1. Hand in: 28.09.21, Count: 10Pts.

1.1. Circle rolling on sine-graph. A circle with radius r rolls on top of the graph of the sine function. Find a parametric representation of the path traced out by the center of the circle. Assume that the radius r is sufficiently small, such that the circle travels through the valleys of the sine graph. Hint: Any graph $y=f(x)$ can be written as a parametric curve by using x as the parameter: $\vec{r}(x)=(x, f(x))$.

1.2. Charged particle in homogeneous magnetic field. The trajectory of a charged

 particle travelling through a magnetic field $\vec{B}=(0,0, B)$ (with B a constant), is given by$$
\vec{r}(t)=\left(\begin{array}{c}
R \cos (\omega t) \\
R \sin (\omega t) \\
c t
\end{array}\right)
$$

where R, ω and c are constants.
(i) Compute the length of the trajectory traced out between $t=0$ and $t=5 T$, where $T=2 \pi / \omega$.
(ii) Show that the given trajectory $\vec{r}(t)$ is in agreement with Newton's law of motion $\vec{F}=m \vec{a}$, where the acting force \vec{F} is given by $\vec{F}=q \vec{v} \times \vec{B}$, i.e. given by the Lorentz force.
(iii) Find an expression for ω in terms of q, B, m.

